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a more exact formula like shown in Section 3.5.2, the actual power for r = 2
replicates is closer to 0.94 than 0.95. However, this approximate formula is
accurate enough for most planning purposes.

The simple formula can also be used backwards by solving for ∆ as a func-
tion of N , that is, ∆ = 8×σ/

√
N . That way, if an experimenter knows his bud-

get for experimentation, which dictates the largest N can be, he can calculate
the size of the effect ∆ that he is likely to be able to detect. If the experi-
menter does not have an accurate estimate of σ, the formula can still be used
by talking about practical effect size in units of the unknown σ. For example,
if an experimenters’ budget allows him to make at most N = 64 experiments,
he can hope to detect effects that are no more than one standard deviation
of the experimental error, that is, ∆ = 8 × σ/

√
64 = σ. This result will be true

regardless of the number of factors in the two-level experiment. Consequently,
with 64 runs he may have one factor with r = 32 replicates of each level, or
six factors with r = 1 replicate of each of the 26 = 64 treatment combinations.

3.7.5 Analysis with One Replicate per Cell

Factorial designs with one replicate per cell are often referred to as unrepli-
cated designs. When there is adequate power for detecting effects with r = 1
replication per cell, or treatment combination, there is no need to double the
experimental work by replicating each experiment. However, in an unrepli-
cated factorial, the same problem arises that was discussed in Section 3.5.4.
There will be zero degrees of freedom for calculating ssE and thus no F -tests
for the effects. However, when there are multiple factors in a two-level factorial,
there are simple graphical tools that allow detection of the significant effects.
Since not all main effects and interactions in a 2k experiment are expected to
be significant, the levels of insignificant factors and combinations of levels de-
fined by the insignificant interactions are equivalent to having replicates in the
design. Graphical tools allow the significant effects (or equivalently regression
coefficients) to be recognized.

The most common graphical tool used to spot significant effects are nor-
mal or half-normal plots that were first suggested by Daniel (1959). These
are easy to produce using the DanielPlot function in the R package FrF2

(Groemping, 2011a) or the LGB function in the package daewr. Additional
graphical tools such as Lenth Plots and Bayes Plots are also useful for detect-
ing significant effects and interactions and can be generated using functions
in the BsMD package (Barrios, 2009). These graphical tools are also available
for interactive analysis via the R DoE plugin (Groemping, 2011b) for the
graphical user interface for R called R Commander (Fox, 2005). Examples
of the menu selections and output available for analysis of two-level factori-
als using the R Commander DoE plugin are shown in files on the web page
(https://lawsonjsl7.netlify.app/webbook/) for this book.

To illustrate the analysis of an unreplicated two-level factorial, consider
an example from the chemical industry. Experimental design principles were


